Package TEES :: Package Utils :: Package Libraries :: Module stats
[hide private]

Module stats

source code


stats.py module

(Requires pstat.py module.)

#################################################
#######  Written by:  Gary Strangman  ###########
#######  Last modified:  May 10, 2002 ###########
#################################################

A collection of basic statistical functions for python.  The function
names appear below.

IMPORTANT:  There are really *3* sets of functions.  The first set has an 'l'
prefix, which can be used with list or tuple arguments.  The second set has
an 'a' prefix, which can accept NumPy array arguments.  These latter
functions are defined only when NumPy is available on the system.  The third
type has NO prefix (i.e., has the name that appears below).  Functions of
this set are members of a "Dispatch" class, c/o David Ascher.  This class
allows different functions to be called depending on the type of the passed
arguments.  Thus, stats.mean is a member of the Dispatch class and
stats.mean(range(20)) will call stats.lmean(range(20)) while
stats.mean(Numeric.arange(20)) will call stats.amean(Numeric.arange(20)).
This is a handy way to keep consistent function names when different
argument types require different functions to be called.  Having
implementated the Dispatch class, however, means that to get info on
a given function, you must use the REAL function name ... that is
"print stats.lmean.__doc__" or "print stats.amean.__doc__" work fine,
while "print stats.mean.__doc__" will print the doc for the Dispatch
class.  NUMPY FUNCTIONS ('a' prefix) generally have more argument options
but should otherwise be consistent with the corresponding list functions.

Disclaimers:  The function list is obviously incomplete and, worse, the
functions are not optimized.  All functions have been tested (some more
so than others), but they are far from bulletproof.  Thus, as with any
free software, no warranty or guarantee is expressed or implied. :-)  A
few extra functions that don't appear in the list below can be found by
interested treasure-hunters.  These functions don't necessarily have
both list and array versions but were deemed useful

CENTRAL TENDENCY:  geometricmean
                   harmonicmean
                   mean
                   median
                   medianscore
                   mode

MOMENTS:  moment
          variation
          skew
          kurtosis
          skewtest   (for Numpy arrays only)
          kurtosistest (for Numpy arrays only)
          normaltest (for Numpy arrays only)

ALTERED VERSIONS:  tmean  (for Numpy arrays only)
                   tvar   (for Numpy arrays only)
                   tmin   (for Numpy arrays only)
                   tmax   (for Numpy arrays only)
                   tstdev (for Numpy arrays only)
                   tsem   (for Numpy arrays only)
                   describe

FREQUENCY STATS:  itemfreq
                  scoreatpercentile
                  percentileofscore
                  histogram
                  cumfreq
                  relfreq

VARIABILITY:  obrientransform
              samplevar
              samplestdev
              signaltonoise (for Numpy arrays only)
              var
              stdev
              sterr
              sem
              z
              zs
              zmap (for Numpy arrays only)

TRIMMING FCNS:  threshold (for Numpy arrays only)
                trimboth
                trim1
                round (round all vals to 'n' decimals; Numpy only)

CORRELATION FCNS:  covariance  (for Numpy arrays only)
                   correlation (for Numpy arrays only)
                   paired
                   pearsonr
                   spearmanr
                   pointbiserialr
                   kendalltau
                   linregress

INFERENTIAL STATS:  ttest_1samp
                    ttest_ind
                    ttest_rel
                    chisquare
                    ks_2samp
                    mannwhitneyu
                    ranksums
                    wilcoxont
                    kruskalwallish
                    friedmanchisquare

PROBABILITY CALCS:  chisqprob
                    erfcc
                    zprob
                    ksprob
                    fprob
                    betacf
                    gammln 
                    betai

ANOVA FUNCTIONS:  F_oneway
                  F_value

SUPPORT FUNCTIONS:  writecc
                    incr
                    sign  (for Numpy arrays only)
                    sum
                    cumsum
                    ss
                    summult
                    sumdiffsquared
                    square_of_sums
                    shellsort
                    rankdata
                    outputpairedstats
                    findwithin


Version: 0.6

Classes [hide private]
  Dispatch
The Dispatch class, care of David Ascher, allows different functions to be called depending on the argument types.
Functions [hide private]
 
lgeometricmean(inlist)
Calculates the geometric mean of the values in the passed list.
source code
 
lharmonicmean(inlist)
Calculates the harmonic mean of the values in the passed list.
source code
 
lmean(inlist)
Returns the arithematic mean of the values in the passed list.
source code
 
lmedian(inlist, numbins=1000)
Returns the computed median value of a list of numbers, given the number of bins to use for the histogram (more bins brings the computed value closer to the median score, default number of bins = 1000).
source code
 
lmedianscore(inlist)
Returns the 'middle' score of the passed list.
source code
 
lmode(inlist)
Returns a list of the modal (most common) score(s) in the passed list.
source code
 
lmoment(inlist, moment=1)
Calculates the nth moment about the mean for a sample (defaults to the 1st moment).
source code
 
lvariation(inlist)
Returns the coefficient of variation, as defined in CRC Standard Probability and Statistics, p.6.
source code
 
lskew(inlist)
Returns the skewness of a distribution, as defined in Numerical Recipies (alternate defn in CRC Standard Probability and Statistics, p.6.)
source code
 
lkurtosis(inlist)
Returns the kurtosis of a distribution, as defined in Numerical Recipies (alternate defn in CRC Standard Probability and Statistics, p.6.)
source code
 
ldescribe(inlist)
Returns some descriptive statistics of the passed list (assumed to be 1D).
source code
 
litemfreq(inlist)
Returns a list of pairs.
source code
 
lscoreatpercentile(inlist, percent)
Returns the score at a given percentile relative to the distribution given by inlist.
source code
 
lpercentileofscore(inlist, score, histbins=10, defaultlimits=None)
Returns the percentile value of a score relative to the distribution given by inlist.
source code
 
lhistogram(inlist, numbins=10, defaultreallimits=None, printextras=0)
Returns (i) a list of histogram bin counts, (ii) the smallest value of the histogram binning, and (iii) the bin width (the last 2 are not necessarily integers).
source code
 
lcumfreq(inlist, numbins=10, defaultreallimits=None)
Returns a cumulative frequency histogram, using the histogram function.
source code
 
lrelfreq(inlist, numbins=10, defaultreallimits=None)
Returns a relative frequency histogram, using the histogram function.
source code
 
lobrientransform(*args)
Computes a transform on input data (any number of columns).
source code
 
lsamplevar(inlist)
Returns the variance of the values in the passed list using N for the denominator (i.e., DESCRIBES the sample variance only).
source code
 
lsamplestdev(inlist)
Returns the standard deviation of the values in the passed list using N for the denominator (i.e., DESCRIBES the sample stdev only).
source code
 
lvar(inlist)
Returns the variance of the values in the passed list using N-1 for the denominator (i.e., for estimating population variance).
source code
 
lstdev(inlist)
Returns the standard deviation of the values in the passed list using N-1 in the denominator (i.e., to estimate population stdev).
source code
 
lsterr(inlist)
Returns the standard error of the values in the passed list using N-1 in the denominator (i.e., to estimate population standard error).
source code
 
lsem(inlist)
Returns the estimated standard error of the mean (sx-bar) of the values in the passed list.
source code
 
lz(inlist, score)
Returns the z-score for a given input score, given that score and the list from which that score came.
source code
 
lzs(inlist)
Returns a list of z-scores, one for each score in the passed list.
source code
 
ltrimboth(l, proportiontocut)
Slices off the passed proportion of items from BOTH ends of the passed list (i.e., with proportiontocut=0.1, slices 'leftmost' 10% AND 'rightmost' 10% of scores.
source code
 
ltrim1(l, proportiontocut, tail='right')
Slices off the passed proportion of items from ONE end of the passed list (i.e., if proportiontocut=0.1, slices off 'leftmost' or 'rightmost' 10% of scores).
source code
 
lpaired(x, y)
Interactively determines the type of data and then runs the appropriated statistic for paired group data.
source code
 
lpearsonr(x, y)
Calculates a Pearson correlation coefficient and the associated probability value.
source code
 
lspearmanr(x, y)
Calculates a Spearman rank-order correlation coefficient.
source code
 
lpointbiserialr(x, y)
Calculates a point-biserial correlation coefficient and the associated probability value.
source code
 
lkendalltau(x, y)
Calculates Kendall's tau ...
source code
 
llinregress(x, y)
Calculates a regression line on x,y pairs.
source code
 
lttest_1samp(a, popmean, printit=0, name='Sample', writemode='a')
Calculates the t-obtained for the independent samples T-test on ONE group of scores a, given a population mean.
source code
 
lttest_ind(a, b, printit=0, name1='Samp1', name2='Samp2', writemode='a')
Calculates the t-obtained T-test on TWO INDEPENDENT samples of scores a, and b.
source code
 
lttest_rel(a, b, printit=0, name1='Sample1', name2='Sample2', writemode='a')
Calculates the t-obtained T-test on TWO RELATED samples of scores, a and b.
source code
 
lchisquare(f_obs, f_exp=None)
Calculates a one-way chi square for list of observed frequencies and returns the result.
source code
 
lks_2samp(data1, data2)
Computes the Kolmogorov-Smirnof statistic on 2 samples.
source code
 
lmannwhitneyu(x, y)
Calculates a Mann-Whitney U statistic on the provided scores and returns the result.
source code
 
ltiecorrect(rankvals)
Corrects for ties in Mann Whitney U and Kruskal Wallis H tests.
source code
 
lranksums(x, y)
Calculates the rank sums statistic on the provided scores and returns the result.
source code
 
lwilcoxont(x, y)
Calculates the Wilcoxon T-test for related samples and returns the result.
source code
 
lkruskalwallish(*args)
The Kruskal-Wallis H-test is a non-parametric ANOVA for 3 or more groups, requiring at least 5 subjects in each group.
source code
 
lfriedmanchisquare(*args)
Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA.
source code
 
lchisqprob(chisq, df)
Returns the (1-tailed) probability value associated with the provided chi-square value and df.
source code
 
lerfcc(x)
Returns the complementary error function erfc(x) with fractional error everywhere less than 1.2e-7.
source code
 
lzprob(z)
Returns the area under the normal curve 'to the left of' the given z value.
source code
 
lksprob(alam)
Computes a Kolmolgorov-Smirnov t-test significance level.
source code
 
lfprob(dfnum, dfden, F)
Returns the (1-tailed) significance level (p-value) of an F statistic given the degrees of freedom for the numerator (dfR-dfF) and the degrees of freedom for the denominator (dfF).
source code
 
lbetacf(a, b, x)
This function evaluates the continued fraction form of the incomplete Beta function, betai.
source code
 
lgammln(xx)
Returns the gamma function of xx.
source code
 
lbetai(a, b, x)
Returns the incomplete beta function:
source code
 
lF_oneway(*lists)
Performs a 1-way ANOVA, returning an F-value and probability given any number of groups.
source code
 
lF_value(ER, EF, dfnum, dfden)
Returns an F-statistic given the following: ER = error associated with the null hypothesis (the Restricted model) EF = error associated with the alternate hypothesis (the Full model) dfR-dfF = degrees of freedom of the numerator dfF = degrees of freedom associated with the denominator/Full model
source code
 
writecc(listoflists, file, writetype='w', extra=2)
Writes a list of lists to a file in columns, customized by the max size of items within the columns (max size of items in col, +2 characters) to specified file.
source code
 
lincr(l, cap)
Simulate a counting system from an n-dimensional list.
source code
 
lsum(inlist)
Returns the sum of the items in the passed list.
source code
 
lcumsum(inlist)
Returns a list consisting of the cumulative sum of the items in the passed list.
source code
 
lss(inlist)
Squares each value in the passed list, adds up these squares and returns the result.
source code
 
lsummult(list1, list2)
Multiplies elements in list1 and list2, element by element, and returns the sum of all resulting multiplications.
source code
 
lsumdiffsquared(x, y)
Takes pairwise differences of the values in lists x and y, squares these differences, and returns the sum of these squares.
source code
 
lsquare_of_sums(inlist)
Adds the values in the passed list, squares the sum, and returns the result.
source code
 
lshellsort(inlist)
Shellsort algorithm.
source code
 
lrankdata(inlist)
Ranks the data in inlist, dealing with ties appropritely.
source code
 
outputpairedstats(fname, writemode, name1, n1, m1, se1, min1, max1, name2, n2, m2, se2, min2, max2, statname, stat, prob)
Prints or write to a file stats for two groups, using the name, n, mean, sterr, min and max for each group, as well as the statistic name, its value, and the associated p-value.
source code
 
lfindwithin(data)
Returns an integer representing a binary vector, where 1=within- subject factor, 0=between.
source code
 
ageometricmean(inarray, dimension=None, keepdims=0)
Calculates the geometric mean of the values in the passed array.
source code
 
aharmonicmean(inarray, dimension=None, keepdims=0)
Calculates the harmonic mean of the values in the passed array.
source code
 
amean(inarray, dimension=None, keepdims=0)
Calculates the arithmatic mean of the values in the passed array.
source code
 
amedian(inarray, numbins=1000)
Calculates the COMPUTED median value of an array of numbers, given the number of bins to use for the histogram (more bins approaches finding the precise median value of the array; default number of bins = 1000).
source code
 
amedianscore(inarray, dimension=None)
Returns the 'middle' score of the passed array.
source code
 
amode(a, dimension=None)
Returns an array of the modal (most common) score in the passed array.
source code
 
atmean(a, limits=None, inclusive=(1,1))
Returns the arithmetic mean of all values in an array, ignoring values strictly outside the sequence passed to 'limits'.
source code
 
atvar(a, limits=None, inclusive=(1,1))
Returns the sample variance of values in an array, (i.e., using N-1), ignoring values strictly outside the sequence passed to 'limits'.
source code
 
atmin(a, lowerlimit=None, dimension=None, inclusive=1)
Returns the minimum value of a, along dimension, including only values less than (or equal to, if inclusive=1) lowerlimit.
source code
 
atmax(a, upperlimit, dimension=None, inclusive=1)
Returns the maximum value of a, along dimension, including only values greater than (or equal to, if inclusive=1) upperlimit.
source code
 
atstdev(a, limits=None, inclusive=(1,1))
Returns the standard deviation of all values in an array, ignoring values strictly outside the sequence passed to 'limits'.
source code
 
atsem(a, limits=None, inclusive=(1,1))
Returns the standard error of the mean for the values in an array, (i.e., using N for the denominator), ignoring values strictly outside the sequence passed to 'limits'.
source code
 
amoment(a, moment=1, dimension=None)
Calculates the nth moment about the mean for a sample (defaults to the 1st moment).
source code
 
avariation(a, dimension=None)
Returns the coefficient of variation, as defined in CRC Standard Probability and Statistics, p.6.
source code
 
askew(a, dimension=None)
Returns the skewness of a distribution (normal ==> 0.0; >0 means extra weight in left tail).
source code
 
akurtosis(a, dimension=None)
Returns the kurtosis of a distribution (normal ==> 3.0; >3 means heavier in the tails, and usually more peaked).
source code
 
adescribe(inarray, dimension=None)
Returns several descriptive statistics of the passed array.
source code
 
askewtest(a, dimension=None)
Tests whether the skew is significantly different from a normal distribution.
source code
 
akurtosistest(a, dimension=None)
Tests whether a dataset has normal kurtosis (i.e., kurtosis=3(n-1)/(n+1)) Valid only for n>20.
source code
 
anormaltest(a, dimension=None)
Tests whether skew and/OR kurtosis of dataset differs from normal curve.
source code
 
aitemfreq(a)
Returns a 2D array of item frequencies.
source code
 
ascoreatpercentile(inarray, percent)
Usage: ascoreatpercentile(inarray,percent) 0<percent<100 Returns: score at given percentile, relative to inarray distribution
source code
 
apercentileofscore(inarray, score, histbins=10, defaultlimits=None)
Note: result of this function depends on the values used to histogram the data(!).
source code
 
ahistogram(inarray, numbins=10, defaultlimits=None, printextras=1)
Returns (i) an array of histogram bin counts, (ii) the smallest value of the histogram binning, and (iii) the bin width (the last 2 are not necessarily integers).
source code
 
acumfreq(a, numbins=10, defaultreallimits=None)
Returns a cumulative frequency histogram, using the histogram function.
source code
 
arelfreq(a, numbins=10, defaultreallimits=None)
Returns a relative frequency histogram, using the histogram function.
source code
 
aobrientransform(*args)
Computes a transform on input data (any number of columns).
source code
 
asamplevar(inarray, dimension=None, keepdims=0)
Returns the sample standard deviation of the values in the passed array (i.e., using N).
source code
 
asamplestdev(inarray, dimension=None, keepdims=0)
Returns the sample standard deviation of the values in the passed array (i.e., using N).
source code
 
asignaltonoise(instack, dimension=0)
Calculates signal-to-noise.
source code
 
avar(inarray, dimension=None, keepdims=0)
Returns the estimated population variance of the values in the passed array (i.e., N-1).
source code
 
astdev(inarray, dimension=None, keepdims=0)
Returns the estimated population standard deviation of the values in the passed array (i.e., N-1).
source code
 
asterr(inarray, dimension=None, keepdims=0)
Returns the estimated population standard error of the values in the passed array (i.e., N-1).
source code
 
asem(inarray, dimension=None, keepdims=0)
Returns the standard error of the mean (i.e., using N) of the values in the passed array.
source code
 
az(a, score)
Returns the z-score of a given input score, given thearray from which that score came.
source code
 
azs(a)
Returns a 1D array of z-scores, one for each score in the passed array, computed relative to the passed array.
source code
 
azmap(scores, compare, dimension=0)
Returns an array of z-scores the shape of scores (e.g., [x,y]), compared to array passed to compare (e.g., [time,x,y]).
source code
 
around(a, digits=1)
Rounds all values in array a to 'digits' decimal places.
source code
 
athreshold(a, threshmin=None, threshmax=None, newval=0)
Like Numeric.clip() except that values <threshmid or >threshmax are replaced by newval instead of by threshmin/threshmax (respectively).
source code
 
atrimboth(a, proportiontocut)
Slices off the passed proportion of items from BOTH ends of the passed array (i.e., with proportiontocut=0.1, slices 'leftmost' 10% AND 'rightmost' 10% of scores.
source code
 
atrim1(a, proportiontocut, tail='right')
Slices off the passed proportion of items from ONE end of the passed array (i.e., if proportiontocut=0.1, slices off 'leftmost' or 'rightmost' 10% of scores).
source code
 
acovariance(X)
Computes the covariance matrix of a matrix X.
source code
 
acorrelation(X)
Computes the correlation matrix of a matrix X.
source code
 
apaired(x, y)
Interactively determines the type of data in x and y, and then runs the appropriated statistic for paired group data.
source code
 
apearsonr(x, y, verbose=1)
Calculates a Pearson correlation coefficient and returns p.
source code
 
aspearmanr(x, y)
Calculates a Spearman rank-order correlation coefficient.
source code
 
apointbiserialr(x, y)
Calculates a point-biserial correlation coefficient and the associated probability value.
source code
 
akendalltau(x, y)
Calculates Kendall's tau ...
source code
 
alinregress(*args)
Calculates a regression line on two arrays, x and y, corresponding to x,y pairs.
source code
 
attest_1samp(a, popmean, printit=0, name='Sample', writemode='a')
Calculates the t-obtained for the independent samples T-test on ONE group of scores a, given a population mean.
source code
 
attest_ind(a, b, dimension=None, printit=0, name1='Samp1', name2='Samp2', writemode='a')
Calculates the t-obtained T-test on TWO INDEPENDENT samples of scores a, and b.
source code
 
attest_rel(a, b, dimension=None, printit=0, name1='Samp1', name2='Samp2', writemode='a')
Calculates the t-obtained T-test on TWO RELATED samples of scores, a and b.
source code
 
achisquare(f_obs, f_exp=None)
Calculates a one-way chi square for array of observed frequencies and returns the result.
source code
 
aks_2samp(data1, data2)
Computes the Kolmogorov-Smirnof statistic on 2 samples.
source code
 
amannwhitneyu(x, y)
Calculates a Mann-Whitney U statistic on the provided scores and returns the result.
source code
 
atiecorrect(rankvals)
Tie-corrector for ties in Mann Whitney U and Kruskal Wallis H tests.
source code
 
aranksums(x, y)
Calculates the rank sums statistic on the provided scores and returns the result.
source code
 
awilcoxont(x, y)
Calculates the Wilcoxon T-test for related samples and returns the result.
source code
 
akruskalwallish(*args)
The Kruskal-Wallis H-test is a non-parametric ANOVA for 3 or more groups, requiring at least 5 subjects in each group.
source code
 
afriedmanchisquare(*args)
Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA.
source code
 
achisqprob(chisq, df)
Returns the (1-tail) probability value associated with the provided chi-square value and df.
source code
 
aerfcc(x)
Returns the complementary error function erfc(x) with fractional error everywhere less than 1.2e-7.
source code
 
azprob(z)
Returns the area under the normal curve 'to the left of' the given z value.
source code
 
aksprob(alam)
Returns the probability value for a K-S statistic computed via ks_2samp.
source code
 
afprob(dfnum, dfden, F)
Returns the 1-tailed significance level (p-value) of an F statistic given the degrees of freedom for the numerator (dfR-dfF) and the degrees of freedom for the denominator (dfF).
source code
 
abetacf(a, b, x, verbose=1)
Evaluates the continued fraction form of the incomplete Beta function, betai.
source code
 
agammln(xx)
Returns the gamma function of xx.
source code
 
abetai(a, b, x, verbose=1)
Returns the incomplete beta function:
source code
 
aglm(data, para)
Calculates a linear model fit ...
source code
 
aF_oneway(*args)
Performs a 1-way ANOVA, returning an F-value and probability given any number of groups.
source code
 
aF_value(ER, EF, dfR, dfF)
Returns an F-statistic given the following:...
source code
 
outputfstats(Enum, Eden, dfnum, dfden, f, prob) source code
 
F_value_multivariate(ER, EF, dfnum, dfden)
Returns an F-statistic given the following: ER = error associated with the null hypothesis (the Restricted model) EF = error associated with the alternate hypothesis (the Full model) dfR = degrees of freedom the Restricted model dfF = degrees of freedom associated with the Restricted model where ER and EF are matrices from a multivariate F calculation.
source code
 
asign(a)
Usage: asign(a) Returns: array shape of a, with -1 where a<0 and +1 where a>=0
source code
 
asum(a, dimension=None, keepdims=0)
An alternative to the Numeric.add.reduce function, which allows one to (1) collapse over multiple dimensions at once, and/or (2) to retain all dimensions in the original array (squashing one down to size.
source code
 
acumsum(a, dimension=None)
Returns an array consisting of the cumulative sum of the items in the passed array.
source code
 
ass(inarray, dimension=None, keepdims=0)
Squares each value in the passed array, adds these squares & returns the result.
source code
 
asummult(array1, array2, dimension=None, keepdims=0)
Multiplies elements in array1 and array2, element by element, and returns the sum (along 'dimension') of all resulting multiplications.
source code
 
asquare_of_sums(inarray, dimension=None, keepdims=0)
Adds the values in the passed array, squares that sum, and returns the result.
source code
 
asumdiffsquared(a, b, dimension=None, keepdims=0)
Takes pairwise differences of the values in arrays a and b, squares these differences, and returns the sum of these squares.
source code
 
ashellsort(inarray)
Shellsort algorithm.
source code
 
arankdata(inarray)
Ranks the data in inarray, dealing with ties appropritely.
source code
 
afindwithin(data)
Returns a binary vector, 1=within-subject factor, 0=between.
source code
Variables [hide private]
  LA = LinearAlgebra
  geometricmean = Dispatch((lgeometricmean, (ListType, TupleType...
  harmonicmean = Dispatch((lharmonicmean, (ListType, TupleType))...
  mean = Dispatch((lmean, (ListType, TupleType)), (amean, (N.Arr...
  median = Dispatch((lmedian, (ListType, TupleType)), (amedian, ...
  medianscore = Dispatch((lmedianscore, (ListType, TupleType)), ...
  mode = Dispatch((lmode, (ListType, TupleType)), (amode, (N.Arr...
  tmean = Dispatch((atmean, (N.ArrayType,)))
  tvar = Dispatch((atvar, (N.ArrayType,)))
  tstdev = Dispatch((atstdev, (N.ArrayType,)))
  tsem = Dispatch((atsem, (N.ArrayType,)))
  moment = Dispatch((lmoment, (ListType, TupleType)), (amoment, ...
  variation = Dispatch((lvariation, (ListType, TupleType)), (ava...
  skew = Dispatch((lskew, (ListType, TupleType)), (askew, (N.Arr...
  kurtosis = Dispatch((lkurtosis, (ListType, TupleType)), (akurt...
  describe = Dispatch((ldescribe, (ListType, TupleType)), (adesc...
  skewtest = Dispatch((askewtest, (ListType, TupleType)), (askew...
  kurtosistest = Dispatch((akurtosistest, (ListType, TupleType))...
  normaltest = Dispatch((anormaltest, (ListType, TupleType)), (a...
  itemfreq = Dispatch((litemfreq, (ListType, TupleType)), (aitem...
  scoreatpercentile = Dispatch((lscoreatpercentile, (ListType, T...
  percentileofscore = Dispatch((lpercentileofscore, (ListType, T...
  histogram = Dispatch((lhistogram, (ListType, TupleType)), (ahi...
  cumfreq = Dispatch((lcumfreq, (ListType, TupleType)), (acumfre...
  relfreq = Dispatch((lrelfreq, (ListType, TupleType)), (arelfre...
  obrientransform = Dispatch((lobrientransform, (ListType, Tuple...
  samplevar = Dispatch((lsamplevar, (ListType, TupleType)), (asa...
  samplestdev = Dispatch((lsamplestdev, (ListType, TupleType)), ...
  signaltonoise = Dispatch((asignaltonoise, (N.ArrayType,)),)
  var = Dispatch((lvar, (ListType, TupleType)), (avar, (N.ArrayT...
  stdev = Dispatch((lstdev, (ListType, TupleType)), (astdev, (N....
  sterr = Dispatch((lsterr, (ListType, TupleType)), (asterr, (N....
  sem = Dispatch((lsem, (ListType, TupleType)), (asem, (N.ArrayT...
  z = Dispatch((lz, (ListType, TupleType)), (az, (N.ArrayType,)))
  zs = Dispatch((lzs, (ListType, TupleType)), (azs, (N.ArrayType...
  threshold = Dispatch((athreshold, (N.ArrayType,)),)
  trimboth = Dispatch((ltrimboth, (ListType, TupleType)), (atrim...
  trim1 = Dispatch((ltrim1, (ListType, TupleType)), (atrim1, (N....
  paired = Dispatch((lpaired, (ListType, TupleType)), (apaired, ...
  pearsonr = Dispatch((lpearsonr, (ListType, TupleType)), (apear...
  spearmanr = Dispatch((lspearmanr, (ListType, TupleType)), (asp...
  pointbiserialr = Dispatch((lpointbiserialr, (ListType, TupleTy...
  kendalltau = Dispatch((lkendalltau, (ListType, TupleType)), (a...
  linregress = Dispatch((llinregress, (ListType, TupleType)), (a...
  ttest_1samp = Dispatch((lttest_1samp, (ListType, TupleType)), ...
  ttest_ind = Dispatch((lttest_ind, (ListType, TupleType)), (att...
  ttest_rel = Dispatch((lttest_rel, (ListType, TupleType)), (att...
  chisquare = Dispatch((lchisquare, (ListType, TupleType)), (ach...
  ks_2samp = Dispatch((lks_2samp, (ListType, TupleType)), (aks_2...
  mannwhitneyu = Dispatch((lmannwhitneyu, (ListType, TupleType))...
  tiecorrect = Dispatch((ltiecorrect, (ListType, TupleType)), (a...
  ranksums = Dispatch((lranksums, (ListType, TupleType)), (arank...
  wilcoxont = Dispatch((lwilcoxont, (ListType, TupleType)), (awi...
  kruskalwallish = Dispatch((lkruskalwallish, (ListType, TupleTy...
  friedmanchisquare = Dispatch((lfriedmanchisquare, (ListType, T...
  chisqprob = Dispatch((lchisqprob, (IntType, FloatType)), (achi...
  zprob = Dispatch((lzprob, (IntType, FloatType)), (azprob, (N.A...
  ksprob = Dispatch((lksprob, (IntType, FloatType)), (aksprob, (...
  fprob = Dispatch((lfprob, (IntType, FloatType)), (afprob, (N.A...
  betacf = Dispatch((lbetacf, (IntType, FloatType)), (abetacf, (...
  betai = Dispatch((lbetai, (IntType, FloatType)), (abetai, (N.A...
  erfcc = Dispatch((lerfcc, (IntType, FloatType)), (aerfcc, (N.A...
  gammln = Dispatch((lgammln, (IntType, FloatType)), (agammln, (...
  F_oneway = Dispatch((lF_oneway, (ListType, TupleType)), (aF_on...
  F_value = Dispatch((lF_value, (ListType, TupleType)), (aF_valu...
  incr = Dispatch((lincr, (ListType, TupleType, N.ArrayType)),)
  sum = Dispatch((lsum, (ListType, TupleType)), (asum, (N.ArrayT...
  cumsum = Dispatch((lcumsum, (ListType, TupleType)), (acumsum, ...
  ss = Dispatch((lss, (ListType, TupleType)), (ass, (N.ArrayType...
  summult = Dispatch((lsummult, (ListType, TupleType)), (asummul...
  square_of_sums = Dispatch((lsquare_of_sums, (ListType, TupleTy...
  sumdiffsquared = Dispatch((lsumdiffsquared, (ListType, TupleTy...
  shellsort = Dispatch((lshellsort, (ListType, TupleType)), (ash...
  rankdata = Dispatch((lrankdata, (ListType, TupleType)), (arank...
  findwithin = Dispatch((lfindwithin, (ListType, TupleType)), (a...
  __package__ = 'TEES.Utils.Libraries'
Function Details [hide private]

lgeometricmean(inlist)

source code 

Calculates the geometric mean of the values in the passed list. That is: n-th root of (x1 * x2 * ... * xn). Assumes a '1D' list.

Usage: lgeometricmean(inlist)

lharmonicmean(inlist)

source code 

Calculates the harmonic mean of the values in the passed list. That is: n / (1/x1 + 1/x2 + ... + 1/xn). Assumes a '1D' list.

Usage: lharmonicmean(inlist)

lmean(inlist)

source code 

Returns the arithematic mean of the values in the passed list. Assumes a '1D' list, but will function on the 1st dim of an array(!).

Usage: lmean(inlist)

lmedian(inlist, numbins=1000)

source code 

Returns the computed median value of a list of numbers, given the number of bins to use for the histogram (more bins brings the computed value closer to the median score, default number of bins = 1000). See G.W. Heiman's Basic Stats (1st Edition), or CRC Probability & Statistics.

Usage: lmedian (inlist, numbins=1000)

lmedianscore(inlist)

source code 

Returns the 'middle' score of the passed list. If there is an even number of scores, the mean of the 2 middle scores is returned.

Usage: lmedianscore(inlist)

lmode(inlist)

source code 

Returns a list of the modal (most common) score(s) in the passed list. If there is more than one such score, all are returned. The bin-count for the mode(s) is also returned.

Usage: lmode(inlist) Returns: bin-count for mode(s), a list of modal value(s)

lmoment(inlist, moment=1)

source code 

Calculates the nth moment about the mean for a sample (defaults to the 1st moment). Used to calculate coefficients of skewness and kurtosis.

Usage: lmoment(inlist,moment=1) Returns: appropriate moment (r) from ... 1/n * SUM((inlist(i)-mean)**r)

lvariation(inlist)

source code 

Returns the coefficient of variation, as defined in CRC Standard Probability and Statistics, p.6.

Usage: lvariation(inlist)

lskew(inlist)

source code 

Returns the skewness of a distribution, as defined in Numerical Recipies (alternate defn in CRC Standard Probability and Statistics, p.6.)

Usage: lskew(inlist)

lkurtosis(inlist)

source code 

Returns the kurtosis of a distribution, as defined in Numerical Recipies (alternate defn in CRC Standard Probability and Statistics, p.6.)

Usage: lkurtosis(inlist)

ldescribe(inlist)

source code 

Returns some descriptive statistics of the passed list (assumed to be 1D).

Usage: ldescribe(inlist) Returns: n, mean, standard deviation, skew, kurtosis

litemfreq(inlist)

source code 

Returns a list of pairs. Each pair consists of one of the scores in inlist and it's frequency count. Assumes a 1D list is passed.

Usage: litemfreq(inlist) Returns: a 2D frequency table (col [0:n-1]=scores, col n=frequencies)

lscoreatpercentile(inlist, percent)

source code 

Returns the score at a given percentile relative to the distribution given by inlist.

Usage: lscoreatpercentile(inlist,percent)

lpercentileofscore(inlist, score, histbins=10, defaultlimits=None)

source code 

Returns the percentile value of a score relative to the distribution given by inlist. Formula depends on the values used to histogram the data(!).

Usage: lpercentileofscore(inlist,score,histbins=10,defaultlimits=None)

lhistogram(inlist, numbins=10, defaultreallimits=None, printextras=0)

source code 

Returns (i) a list of histogram bin counts, (ii) the smallest value of the histogram binning, and (iii) the bin width (the last 2 are not necessarily integers). Default number of bins is 10. If no sequence object is given for defaultreallimits, the routine picks (usually non-pretty) bins spanning all the numbers in the inlist.

Usage: lhistogram (inlist, numbins=10, defaultreallimits=None,suppressoutput=0) Returns: list of bin values, lowerreallimit, binsize, extrapoints

lcumfreq(inlist, numbins=10, defaultreallimits=None)

source code 

Returns a cumulative frequency histogram, using the histogram function.

Usage: lcumfreq(inlist,numbins=10,defaultreallimits=None) Returns: list of cumfreq bin values, lowerreallimit, binsize, extrapoints

lrelfreq(inlist, numbins=10, defaultreallimits=None)

source code 

Returns a relative frequency histogram, using the histogram function.

Usage: lrelfreq(inlist,numbins=10,defaultreallimits=None) Returns: list of cumfreq bin values, lowerreallimit, binsize, extrapoints

lobrientransform(*args)

source code 

Computes a transform on input data (any number of columns). Used to test for homogeneity of variance prior to running one-way stats. From Maxwell and Delaney, p.112.

Usage: lobrientransform(*args) Returns: transformed data for use in an ANOVA

lsamplevar(inlist)

source code 

Returns the variance of the values in the passed list using N for the denominator (i.e., DESCRIBES the sample variance only).

Usage: lsamplevar(inlist)

lsamplestdev(inlist)

source code 

Returns the standard deviation of the values in the passed list using N for the denominator (i.e., DESCRIBES the sample stdev only).

Usage: lsamplestdev(inlist)

lvar(inlist)

source code 

Returns the variance of the values in the passed list using N-1 for the denominator (i.e., for estimating population variance).

Usage: lvar(inlist)

lstdev(inlist)

source code 

Returns the standard deviation of the values in the passed list using N-1 in the denominator (i.e., to estimate population stdev).

Usage: lstdev(inlist)

lsterr(inlist)

source code 

Returns the standard error of the values in the passed list using N-1 in the denominator (i.e., to estimate population standard error).

Usage: lsterr(inlist)

lsem(inlist)

source code 

Returns the estimated standard error of the mean (sx-bar) of the values in the passed list. sem = stdev / sqrt(n)

Usage: lsem(inlist)

lz(inlist, score)

source code 

Returns the z-score for a given input score, given that score and the list from which that score came. Not appropriate for population calculations.

Usage: lz(inlist, score)

lzs(inlist)

source code 

Returns a list of z-scores, one for each score in the passed list.

Usage: lzs(inlist)

ltrimboth(l, proportiontocut)

source code 

Slices off the passed proportion of items from BOTH ends of the passed list (i.e., with proportiontocut=0.1, slices 'leftmost' 10% AND 'rightmost' 10% of scores. Assumes list is sorted by magnitude. Slices off LESS if proportion results in a non-integer slice index (i.e., conservatively slices off proportiontocut).

Usage: ltrimboth (l,proportiontocut) Returns: trimmed version of list l

ltrim1(l, proportiontocut, tail='right')

source code 

Slices off the passed proportion of items from ONE end of the passed list (i.e., if proportiontocut=0.1, slices off 'leftmost' or 'rightmost' 10% of scores). Slices off LESS if proportion results in a non-integer slice index (i.e., conservatively slices off proportiontocut).

Usage: ltrim1 (l,proportiontocut,tail='right') or set tail='left' Returns: trimmed version of list l

lpaired(x, y)

source code 

Interactively determines the type of data and then runs the appropriated statistic for paired group data.

Usage: lpaired(x,y) Returns: appropriate statistic name, value, and probability

lpearsonr(x, y)

source code 

Calculates a Pearson correlation coefficient and the associated probability value. Taken from Heiman's Basic Statistics for the Behav. Sci (2nd), p.195.

Usage: lpearsonr(x,y) where x and y are equal-length lists Returns: Pearson's r value, two-tailed p-value

lspearmanr(x, y)

source code 

Calculates a Spearman rank-order correlation coefficient. Taken from Heiman's Basic Statistics for the Behav. Sci (1st), p.192.

Usage: lspearmanr(x,y) where x and y are equal-length lists Returns: Spearman's r, two-tailed p-value

lpointbiserialr(x, y)

source code 

Calculates a point-biserial correlation coefficient and the associated probability value. Taken from Heiman's Basic Statistics for the Behav. Sci (1st), p.194.

Usage: lpointbiserialr(x,y) where x,y are equal-length lists Returns: Point-biserial r, two-tailed p-value

lkendalltau(x, y)

source code 

Calculates Kendall's tau ... correlation of ordinal data. Adapted from function kendl1 in Numerical Recipies. Needs good test-routine.@@@

Usage: lkendalltau(x,y) Returns: Kendall's tau, two-tailed p-value

llinregress(x, y)

source code 

Calculates a regression line on x,y pairs.

Usage: llinregress(x,y) x,y are equal-length lists of x-y coordinates Returns: slope, intercept, r, two-tailed prob, sterr-of-estimate

lttest_1samp(a, popmean, printit=0, name='Sample', writemode='a')

source code 

Calculates the t-obtained for the independent samples T-test on ONE group of scores a, given a population mean. If printit=1, results are printed to the screen. If printit='filename', the results are output to 'filename' using the given writemode (default=append). Returns t-value, and prob.

Usage: lttest_1samp(a,popmean,Name='Sample',printit=0,writemode='a') Returns: t-value, two-tailed prob

lttest_ind(a, b, printit=0, name1='Samp1', name2='Samp2', writemode='a')

source code 

Calculates the t-obtained T-test on TWO INDEPENDENT samples of scores a, and b. From Numerical Recipies, p.483. If printit=1, results are printed to the screen. If printit='filename', the results are output to 'filename' using the given writemode (default=append). Returns t-value, and prob.

Usage: lttest_ind(a,b,printit=0,name1='Samp1',name2='Samp2',writemode='a') Returns: t-value, two-tailed prob

lttest_rel(a, b, printit=0, name1='Sample1', name2='Sample2', writemode='a')

source code 

Calculates the t-obtained T-test on TWO RELATED samples of scores, a and b. From Numerical Recipies, p.483. If printit=1, results are printed to the screen. If printit='filename', the results are output to 'filename' using the given writemode (default=append). Returns t-value, and prob.

Usage: lttest_rel(a,b,printit=0,name1='Sample1',name2='Sample2',writemode='a') Returns: t-value, two-tailed prob

lchisquare(f_obs, f_exp=None)

source code 

Calculates a one-way chi square for list of observed frequencies and returns the result. If no expected frequencies are given, the total N is assumed to be equally distributed across all groups.

Usage: lchisquare(f_obs, f_exp=None) f_obs = list of observed cell freq. Returns: chisquare-statistic, associated p-value

lks_2samp(data1, data2)

source code 

Computes the Kolmogorov-Smirnof statistic on 2 samples. From Numerical Recipies in C, page 493.

Usage: lks_2samp(data1,data2) data1&2 are lists of values for 2 conditions Returns: KS D-value, associated p-value

lmannwhitneyu(x, y)

source code 

Calculates a Mann-Whitney U statistic on the provided scores and returns the result. Use only when the n in each condition is < 20 and you have 2 independent samples of ranks. NOTE: Mann-Whitney U is significant if the u-obtained is LESS THAN or equal to the critical value of U found in the tables. Equivalent to Kruskal-Wallis H with just 2 groups.

Usage: lmannwhitneyu(data) Returns: u-statistic, one-tailed p-value (i.e., p(z(U)))

ltiecorrect(rankvals)

source code 

Corrects for ties in Mann Whitney U and Kruskal Wallis H tests. See Siegel, S. (1956) Nonparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill. Code adapted from |Stat rankind.c code.

Usage: ltiecorrect(rankvals) Returns: T correction factor for U or H

lranksums(x, y)

source code 

Calculates the rank sums statistic on the provided scores and returns the result. Use only when the n in each condition is > 20 and you have 2 independent samples of ranks.

Usage: lranksums(x,y) Returns: a z-statistic, two-tailed p-value

lwilcoxont(x, y)

source code 

Calculates the Wilcoxon T-test for related samples and returns the result. A non-parametric T-test.

Usage: lwilcoxont(x,y) Returns: a t-statistic, two-tail probability estimate

lkruskalwallish(*args)

source code 

The Kruskal-Wallis H-test is a non-parametric ANOVA for 3 or more groups, requiring at least 5 subjects in each group. This function calculates the Kruskal-Wallis H-test for 3 or more independent samples and returns the result.

Usage: lkruskalwallish(*args) Returns: H-statistic (corrected for ties), associated p-value

lfriedmanchisquare(*args)

source code 

Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA. This function calculates the Friedman Chi-square test for repeated measures and returns the result, along with the associated probability value. It assumes 3 or more repeated measures. Only 3 levels requires a minimum of 10 subjects in the study. Four levels requires 5 subjects per level(??).

Usage: lfriedmanchisquare(*args) Returns: chi-square statistic, associated p-value

lchisqprob(chisq, df)

source code 

Returns the (1-tailed) probability value associated with the provided chi-square value and df. Adapted from chisq.c in Gary Perlman's |Stat.

Usage: lchisqprob(chisq,df)

lerfcc(x)

source code 

Returns the complementary error function erfc(x) with fractional error everywhere less than 1.2e-7. Adapted from Numerical Recipies.

Usage: lerfcc(x)

lzprob(z)

source code 

Returns the area under the normal curve 'to the left of' the given z value.
Thus, 
    for z<0, zprob(z) = 1-tail probability
    for z>0, 1.0-zprob(z) = 1-tail probability
    for any z, 2.0*(1.0-zprob(abs(z))) = 2-tail probability
Adapted from z.c in Gary Perlman's |Stat.

Usage:   lzprob(z)

lksprob(alam)

source code 

Computes a Kolmolgorov-Smirnov t-test significance level. Adapted from Numerical Recipies.

Usage: lksprob(alam)

lfprob(dfnum, dfden, F)

source code 

Returns the (1-tailed) significance level (p-value) of an F statistic given the degrees of freedom for the numerator (dfR-dfF) and the degrees of freedom for the denominator (dfF).

Usage: lfprob(dfnum, dfden, F) where usually dfnum=dfbn, dfden=dfwn

lbetacf(a, b, x)

source code 

This function evaluates the continued fraction form of the incomplete Beta function, betai. (Adapted from: Numerical Recipies in C.)

Usage: lbetacf(a,b,x)

lgammln(xx)

source code 

Returns the gamma function of xx.
    Gamma(z) = Integral(0,infinity) of t^(z-1)exp(-t) dt.
(Adapted from: Numerical Recipies in C.)

Usage:   lgammln(xx)

lbetai(a, b, x)

source code 

Returns the incomplete beta function:

    I-sub-x(a,b) = 1/B(a,b)*(Integral(0,x) of t^(a-1)(1-t)^(b-1) dt)

where a,b>0 and B(a,b) = G(a)*G(b)/(G(a+b)) where G(a) is the gamma
function of a.  The continued fraction formulation is implemented here,
using the betacf function.  (Adapted from: Numerical Recipies in C.)

Usage:   lbetai(a,b,x)

lF_oneway(*lists)

source code 

Performs a 1-way ANOVA, returning an F-value and probability given
any number of groups.  From Heiman, pp.394-7.

Usage:   F_oneway(*lists)    where *lists is any number of lists, one per
                                  treatment group
Returns: F value, one-tailed p-value

lF_value(ER, EF, dfnum, dfden)

source code 

Returns an F-statistic given the following:
        ER  = error associated with the null hypothesis (the Restricted model)
        EF  = error associated with the alternate hypothesis (the Full model)
        dfR-dfF = degrees of freedom of the numerator
        dfF = degrees of freedom associated with the denominator/Full model

Usage:   lF_value(ER,EF,dfnum,dfden)

writecc(listoflists, file, writetype='w', extra=2)

source code 

Writes a list of lists to a file in columns, customized by the max size of items within the columns (max size of items in col, +2 characters) to specified file. File-overwrite is the default.

Usage: writecc (listoflists,file,writetype='w',extra=2) Returns: None

lincr(l, cap)

source code 

Simulate a counting system from an n-dimensional list.

Usage: lincr(l,cap) l=list to increment, cap=max values for each list pos'n Returns: next set of values for list l, OR -1 (if overflow)

lsum(inlist)

source code 

Returns the sum of the items in the passed list.

Usage: lsum(inlist)

lcumsum(inlist)

source code 

Returns a list consisting of the cumulative sum of the items in the passed list.

Usage: lcumsum(inlist)

lss(inlist)

source code 

Squares each value in the passed list, adds up these squares and returns the result.

Usage: lss(inlist)

lsummult(list1, list2)

source code 

Multiplies elements in list1 and list2, element by element, and returns the sum of all resulting multiplications. Must provide equal length lists.

Usage: lsummult(list1,list2)

lsumdiffsquared(x, y)

source code 

Takes pairwise differences of the values in lists x and y, squares these differences, and returns the sum of these squares.

Usage: lsumdiffsquared(x,y) Returns: sum[(x[i]-y[i])**2]

lsquare_of_sums(inlist)

source code 

Adds the values in the passed list, squares the sum, and returns the result.

Usage: lsquare_of_sums(inlist) Returns: sum(inlist[i])**2

lshellsort(inlist)

source code 

Shellsort algorithm. Sorts a 1D-list.

Usage: lshellsort(inlist) Returns: sorted-inlist, sorting-index-vector (for original list)

lrankdata(inlist)

source code 

Ranks the data in inlist, dealing with ties appropritely. Assumes a 1D inlist. Adapted from Gary Perlman's |Stat ranksort.

Usage: lrankdata(inlist) Returns: a list of length equal to inlist, containing rank scores

outputpairedstats(fname, writemode, name1, n1, m1, se1, min1, max1, name2, n2, m2, se2, min2, max2, statname, stat, prob)

source code 

Prints or write to a file stats for two groups, using the name, n,
mean, sterr, min and max for each group, as well as the statistic name,
its value, and the associated p-value.

Usage:   outputpairedstats(fname,writemode,
                           name1,n1,mean1,stderr1,min1,max1,
                           name2,n2,mean2,stderr2,min2,max2,
                           statname,stat,prob)
Returns: None

lfindwithin(data)

source code 

Returns an integer representing a binary vector, where 1=within- subject factor, 0=between. Input equals the entire data 2D list (i.e., column 0=random factor, column -1=measured values (those two are skipped). Note: input data is in |Stat format ... a list of lists ("2D list") with one row per measured value, first column=subject identifier, last column= score, one in-between column per factor (these columns contain level designations on each factor). See also stats.anova.__doc__.

Usage: lfindwithin(data) data in |Stat format

ageometricmean(inarray, dimension=None, keepdims=0)

source code 

Calculates the geometric mean of the values in the passed array. That is: n-th root of (x1 * x2 * ... * xn). Defaults to ALL values in the passed array. Use dimension=None to flatten array first. REMEMBER: if dimension=0, it collapses over dimension 0 ('rows' in a 2D array) only, and if dimension is a sequence, it collapses over all specified dimensions. If keepdims is set to 1, the resulting array will have as many dimensions as inarray, with only 1 'level' per dim that was collapsed over.

Usage: ageometricmean(inarray,dimension=None,keepdims=0) Returns: geometric mean computed over dim(s) listed in dimension

aharmonicmean(inarray, dimension=None, keepdims=0)

source code 

Calculates the harmonic mean of the values in the passed array. That is: n / (1/x1 + 1/x2 + ... + 1/xn). Defaults to ALL values in the passed array. Use dimension=None to flatten array first. REMEMBER: if dimension=0, it collapses over dimension 0 ('rows' in a 2D array) only, and if dimension is a sequence, it collapses over all specified dimensions. If keepdims is set to 1, the resulting array will have as many dimensions as inarray, with only 1 'level' per dim that was collapsed over.

Usage: aharmonicmean(inarray,dimension=None,keepdims=0) Returns: harmonic mean computed over dim(s) in dimension

amean(inarray, dimension=None, keepdims=0)

source code 

Calculates the arithmatic mean of the values in the passed array. That is: 1/n * (x1 + x2 + ... + xn). Defaults to ALL values in the passed array. Use dimension=None to flatten array first. REMEMBER: if dimension=0, it collapses over dimension 0 ('rows' in a 2D array) only, and if dimension is a sequence, it collapses over all specified dimensions. If keepdims is set to 1, the resulting array will have as many dimensions as inarray, with only 1 'level' per dim that was collapsed over.

Usage: amean(inarray,dimension=None,keepdims=0) Returns: arithematic mean calculated over dim(s) in dimension

amedian(inarray, numbins=1000)

source code 

Calculates the COMPUTED median value of an array of numbers, given the number of bins to use for the histogram (more bins approaches finding the precise median value of the array; default number of bins = 1000). From G.W. Heiman's Basic Stats, or CRC Probability & Statistics. NOTE: THIS ROUTINE ALWAYS uses the entire passed array (flattens it first).

Usage: amedian(inarray,numbins=1000) Returns: median calculated over ALL values in inarray

amedianscore(inarray, dimension=None)

source code 

Returns the 'middle' score of the passed array. If there is an even number of scores, the mean of the 2 middle scores is returned. Can function with 1D arrays, or on the FIRST dimension of 2D arrays (i.e., dimension can be None, to pre-flatten the array, or else dimension must equal 0).

Usage: amedianscore(inarray,dimension=None) Returns: 'middle' score of the array, or the mean of the 2 middle scores

amode(a, dimension=None)

source code 

Returns an array of the modal (most common) score in the passed array. If there is more than one such score, ONLY THE FIRST is returned. The bin-count for the modal values is also returned. Operates on whole array (dimension=None), or on a given dimension.

Usage: amode(a, dimension=None) Returns: array of bin-counts for mode(s), array of corresponding modal values

atmean(a, limits=None, inclusive=(1,1))

source code 

Returns the arithmetic mean of all values in an array, ignoring values strictly outside the sequence passed to 'limits'. Note: either limit in the sequence, or the value of limits itself, can be set to None. The inclusive list/tuple determines whether the lower and upper limiting bounds (respectively) are open/exclusive (0) or closed/inclusive (1).

Usage: atmean(a,limits=None,inclusive=(1,1))

atvar(a, limits=None, inclusive=(1,1))

source code 

Returns the sample variance of values in an array, (i.e., using N-1), ignoring values strictly outside the sequence passed to 'limits'. Note: either limit in the sequence, or the value of limits itself, can be set to None. The inclusive list/tuple determines whether the lower and upper limiting bounds (respectively) are open/exclusive (0) or closed/inclusive (1).

Usage: atvar(a,limits=None,inclusive=(1,1))

atmin(a, lowerlimit=None, dimension=None, inclusive=1)

source code 

Returns the minimum value of a, along dimension, including only values less than (or equal to, if inclusive=1) lowerlimit. If the limit is set to None, all values in the array are used.

Usage: atmin(a,lowerlimit=None,dimension=None,inclusive=1)

atmax(a, upperlimit, dimension=None, inclusive=1)

source code 

Returns the maximum value of a, along dimension, including only values greater than (or equal to, if inclusive=1) upperlimit. If the limit is set to None, a limit larger than the max value in the array is used.

Usage: atmax(a,upperlimit,dimension=None,inclusive=1)

atstdev(a, limits=None, inclusive=(1,1))

source code 

Returns the standard deviation of all values in an array, ignoring values strictly outside the sequence passed to 'limits'. Note: either limit in the sequence, or the value of limits itself, can be set to None. The inclusive list/tuple determines whether the lower and upper limiting bounds (respectively) are open/exclusive (0) or closed/inclusive (1).

Usage: atstdev(a,limits=None,inclusive=(1,1))

atsem(a, limits=None, inclusive=(1,1))

source code 

Returns the standard error of the mean for the values in an array, (i.e., using N for the denominator), ignoring values strictly outside the sequence passed to 'limits'. Note: either limit in the sequence, or the value of limits itself, can be set to None. The inclusive list/tuple determines whether the lower and upper limiting bounds (respectively) are open/exclusive (0) or closed/inclusive (1).

Usage: atsem(a,limits=None,inclusive=(1,1))

amoment(a, moment=1, dimension=None)

source code 

Calculates the nth moment about the mean for a sample (defaults to the 1st moment). Generally used to calculate coefficients of skewness and kurtosis. Dimension can equal None (ravel array first), an integer (the dimension over which to operate), or a sequence (operate over multiple dimensions).

Usage: amoment(a,moment=1,dimension=None) Returns: appropriate moment along given dimension

avariation(a, dimension=None)

source code 

Returns the coefficient of variation, as defined in CRC Standard Probability and Statistics, p.6. Dimension can equal None (ravel array first), an integer (the dimension over which to operate), or a sequence (operate over multiple dimensions).

Usage: avariation(a,dimension=None)

askew(a, dimension=None)

source code 

Returns the skewness of a distribution (normal ==> 0.0; >0 means extra weight in left tail). Use askewtest() to see if it's close enough. Dimension can equal None (ravel array first), an integer (the dimension over which to operate), or a sequence (operate over multiple dimensions).

Usage: askew(a, dimension=None) Returns: skew of vals in a along dimension, returning ZERO where all vals equal

akurtosis(a, dimension=None)

source code 

Returns the kurtosis of a distribution (normal ==> 3.0; >3 means heavier in the tails, and usually more peaked). Use akurtosistest() to see if it's close enough. Dimension can equal None (ravel array first), an integer (the dimension over which to operate), or a sequence (operate over multiple dimensions).

Usage: akurtosis(a,dimension=None) Returns: kurtosis of values in a along dimension, and ZERO where all vals equal

adescribe(inarray, dimension=None)

source code 

Returns several descriptive statistics of the passed array. Dimension can equal None (ravel array first), an integer (the dimension over which to operate), or a sequence (operate over multiple dimensions).

Usage: adescribe(inarray,dimension=None) Returns: n, (min,max), mean, standard deviation, skew, kurtosis

askewtest(a, dimension=None)

source code 

Tests whether the skew is significantly different from a normal distribution. Dimension can equal None (ravel array first), an integer (the dimension over which to operate), or a sequence (operate over multiple dimensions).

Usage: askewtest(a,dimension=None) Returns: z-score and 2-tail z-probability

akurtosistest(a, dimension=None)

source code 

Tests whether a dataset has normal kurtosis (i.e., kurtosis=3(n-1)/(n+1)) Valid only for n>20. Dimension can equal None (ravel array first), an integer (the dimension over which to operate), or a sequence (operate over multiple dimensions).

Usage: akurtosistest(a,dimension=None) Returns: z-score and 2-tail z-probability, returns 0 for bad pixels

anormaltest(a, dimension=None)

source code 

Tests whether skew and/OR kurtosis of dataset differs from normal curve. Can operate over multiple dimensions. Dimension can equal None (ravel array first), an integer (the dimension over which to operate), or a sequence (operate over multiple dimensions).

Usage: anormaltest(a,dimension=None) Returns: z-score and 2-tail probability

aitemfreq(a)

source code 

Returns a 2D array of item frequencies. Column 1 contains item values, column 2 contains their respective counts. Assumes a 1D array is passed.

Usage: aitemfreq(a) Returns: a 2D frequency table (col [0:n-1]=scores, col n=frequencies)

apercentileofscore(inarray, score, histbins=10, defaultlimits=None)

source code 

Note: result of this function depends on the values used to histogram the data(!).

Usage: apercentileofscore(inarray,score,histbins=10,defaultlimits=None) Returns: percentile-position of score (0-100) relative to inarray

ahistogram(inarray, numbins=10, defaultlimits=None, printextras=1)

source code 

Returns (i) an array of histogram bin counts, (ii) the smallest value of the histogram binning, and (iii) the bin width (the last 2 are not necessarily integers). Default number of bins is 10. Defaultlimits can be None (the routine picks bins spanning all the numbers in the inarray) or a 2-sequence (lowerlimit, upperlimit). Returns all of the following: array of bin values, lowerreallimit, binsize, extrapoints.

Usage: ahistogram(inarray,numbins=10,defaultlimits=None,printextras=1) Returns: (array of bin counts, bin-minimum, min-width, #-points-outside-range)

acumfreq(a, numbins=10, defaultreallimits=None)

source code 

Returns a cumulative frequency histogram, using the histogram function. Defaultreallimits can be None (use all data), or a 2-sequence containing lower and upper limits on values to include.

Usage: acumfreq(a,numbins=10,defaultreallimits=None) Returns: array of cumfreq bin values, lowerreallimit, binsize, extrapoints

arelfreq(a, numbins=10, defaultreallimits=None)

source code 

Returns a relative frequency histogram, using the histogram function. Defaultreallimits can be None (use all data), or a 2-sequence containing lower and upper limits on values to include.

Usage: arelfreq(a,numbins=10,defaultreallimits=None) Returns: array of cumfreq bin values, lowerreallimit, binsize, extrapoints

aobrientransform(*args)

source code 

Computes a transform on input data (any number of columns). Used to test for homogeneity of variance prior to running one-way stats. Each array in *args is one level of a factor. If an F_oneway() run on the transformed data and found significant, variances are unequal. From Maxwell and Delaney, p.112.

Usage: aobrientransform(*args) *args = 1D arrays, one per level of factor Returns: transformed data for use in an ANOVA

asamplevar(inarray, dimension=None, keepdims=0)

source code 

Returns the sample standard deviation of the values in the passed array (i.e., using N). Dimension can equal None (ravel array first), an integer (the dimension over which to operate), or a sequence (operate over multiple dimensions). Set keepdims=1 to return an array with the same number of dimensions as inarray.

Usage: asamplevar(inarray,dimension=None,keepdims=0)

asamplestdev(inarray, dimension=None, keepdims=0)

source code 

Returns the sample standard deviation of the values in the passed array (i.e., using N). Dimension can equal None (ravel array first), an integer (the dimension over which to operate), or a sequence (operate over multiple dimensions). Set keepdims=1 to return an array with the same number of dimensions as inarray.

Usage: asamplestdev(inarray,dimension=None,keepdims=0)

asignaltonoise(instack, dimension=0)

source code 

Calculates signal-to-noise.  Dimension can equal None (ravel array
first), an integer (the dimension over which to operate), or a
sequence (operate over multiple dimensions).

Usage:   asignaltonoise(instack,dimension=0):
Returns: array containing the value of (mean/stdev) along dimension,
         or 0 when stdev=0

avar(inarray, dimension=None, keepdims=0)

source code 

Returns the estimated population variance of the values in the passed array (i.e., N-1). Dimension can equal None (ravel array first), an integer (the dimension over which to operate), or a sequence (operate over multiple dimensions). Set keepdims=1 to return an array with the same number of dimensions as inarray.

Usage: avar(inarray,dimension=None,keepdims=0)

astdev(inarray, dimension=None, keepdims=0)

source code 

Returns the estimated population standard deviation of the values in the passed array (i.e., N-1). Dimension can equal None (ravel array first), an integer (the dimension over which to operate), or a sequence (operate over multiple dimensions). Set keepdims=1 to return an array with the same number of dimensions as inarray.

Usage: astdev(inarray,dimension=None,keepdims=0)

asterr(inarray, dimension=None, keepdims=0)

source code 

Returns the estimated population standard error of the values in the passed array (i.e., N-1). Dimension can equal None (ravel array first), an integer (the dimension over which to operate), or a sequence (operate over multiple dimensions). Set keepdims=1 to return an array with the same number of dimensions as inarray.

Usage: asterr(inarray,dimension=None,keepdims=0)

asem(inarray, dimension=None, keepdims=0)

source code 

Returns the standard error of the mean (i.e., using N) of the values in the passed array. Dimension can equal None (ravel array first), an integer (the dimension over which to operate), or a sequence (operate over multiple dimensions). Set keepdims=1 to return an array with the same number of dimensions as inarray.

Usage: asem(inarray,dimension=None, keepdims=0)

az(a, score)

source code 

Returns the z-score of a given input score, given thearray from which that score came. Not appropriate for population calculations, nor for arrays > 1D.

Usage: az(a, score)

azs(a)

source code 

Returns a 1D array of z-scores, one for each score in the passed array, computed relative to the passed array.

Usage: azs(a)

azmap(scores, compare, dimension=0)

source code 

Returns an array of z-scores the shape of scores (e.g., [x,y]), compared to array passed to compare (e.g., [time,x,y]). Assumes collapsing over dim 0 of the compare array.

Usage: azs(scores, compare, dimension=0)

around(a, digits=1)

source code 

Rounds all values in array a to 'digits' decimal places.

Usage: around(a,digits) Returns: a, where each value is rounded to 'digits' decimals

athreshold(a, threshmin=None, threshmax=None, newval=0)

source code 

Like Numeric.clip() except that values <threshmid or >threshmax are replaced by newval instead of by threshmin/threshmax (respectively).

Usage: athreshold(a,threshmin=None,threshmax=None,newval=0) Returns: a, with values <threshmin or >threshmax replaced with newval

atrimboth(a, proportiontocut)

source code 

Slices off the passed proportion of items from BOTH ends of the passed array (i.e., with proportiontocut=0.1, slices 'leftmost' 10% AND 'rightmost' 10% of scores. You must pre-sort the array if you want "proper" trimming. Slices off LESS if proportion results in a non-integer slice index (i.e., conservatively slices off proportiontocut).

Usage: atrimboth (a,proportiontocut) Returns: trimmed version of array a

atrim1(a, proportiontocut, tail='right')

source code 

Slices off the passed proportion of items from ONE end of the passed array (i.e., if proportiontocut=0.1, slices off 'leftmost' or 'rightmost' 10% of scores). Slices off LESS if proportion results in a non-integer slice index (i.e., conservatively slices off proportiontocut).

Usage: atrim1(a,proportiontocut,tail='right') or set tail='left' Returns: trimmed version of array a

acovariance(X)

source code 

Computes the covariance matrix of a matrix X. Requires a 2D matrix input.

Usage: acovariance(X) Returns: covariance matrix of X

acorrelation(X)

source code 

Computes the correlation matrix of a matrix X. Requires a 2D matrix input.

Usage: acorrelation(X) Returns: correlation matrix of X

apaired(x, y)

source code 

Interactively determines the type of data in x and y, and then runs the appropriated statistic for paired group data.

Usage: apaired(x,y) x,y = the two arrays of values to be compared Returns: appropriate statistic name, value, and probability

apearsonr(x, y, verbose=1)

source code 

Calculates a Pearson correlation coefficient and returns p. Taken from Heiman's Basic Statistics for the Behav. Sci (2nd), p.195.

Usage: apearsonr(x,y,verbose=1) where x,y are equal length arrays Returns: Pearson's r, two-tailed p-value

aspearmanr(x, y)

source code 

Calculates a Spearman rank-order correlation coefficient. Taken from Heiman's Basic Statistics for the Behav. Sci (1st), p.192.

Usage: aspearmanr(x,y) where x,y are equal-length arrays Returns: Spearman's r, two-tailed p-value

apointbiserialr(x, y)

source code 

Calculates a point-biserial correlation coefficient and the associated probability value. Taken from Heiman's Basic Statistics for the Behav. Sci (1st), p.194.

Usage: apointbiserialr(x,y) where x,y are equal length arrays Returns: Point-biserial r, two-tailed p-value

akendalltau(x, y)

source code 

Calculates Kendall's tau ... correlation of ordinal data. Adapted from function kendl1 in Numerical Recipies. Needs good test-cases.@@@

Usage: akendalltau(x,y) Returns: Kendall's tau, two-tailed p-value

alinregress(*args)

source code 

Calculates a regression line on two arrays, x and y, corresponding to x,y pairs. If a single 2D array is passed, alinregress finds dim with 2 levels and splits data into x,y pairs along that dim.

Usage: alinregress(*args) args=2 equal-length arrays, or one 2D array Returns: slope, intercept, r, two-tailed prob, sterr-of-the-estimate

attest_1samp(a, popmean, printit=0, name='Sample', writemode='a')

source code 

Calculates the t-obtained for the independent samples T-test on ONE group of scores a, given a population mean. If printit=1, results are printed to the screen. If printit='filename', the results are output to 'filename' using the given writemode (default=append). Returns t-value, and prob.

Usage: attest_1samp(a,popmean,Name='Sample',printit=0,writemode='a') Returns: t-value, two-tailed prob

attest_ind(a, b, dimension=None, printit=0, name1='Samp1', name2='Samp2', writemode='a')

source code 

Calculates the t-obtained T-test on TWO INDEPENDENT samples of scores
a, and b.  From Numerical Recipies, p.483.  If printit=1, results are
printed to the screen.  If printit='filename', the results are output
to 'filename' using the given writemode (default=append).  Dimension
can equal None (ravel array first), or an integer (the dimension over
which to operate on a and b).

Usage:   attest_ind (a,b,dimension=None,printit=0,
                     Name1='Samp1',Name2='Samp2',writemode='a')
Returns: t-value, two-tailed p-value

attest_rel(a, b, dimension=None, printit=0, name1='Samp1', name2='Samp2', writemode='a')

source code 

Calculates the t-obtained T-test on TWO RELATED samples of scores, a
and b.  From Numerical Recipies, p.483.  If printit=1, results are
printed to the screen.  If printit='filename', the results are output
to 'filename' using the given writemode (default=append).  Dimension
can equal None (ravel array first), or an integer (the dimension over
which to operate on a and b).

Usage:   attest_rel(a,b,dimension=None,printit=0,
                    name1='Samp1',name2='Samp2',writemode='a')
Returns: t-value, two-tailed p-value

achisquare(f_obs, f_exp=None)

source code 

Calculates a one-way chi square for array of observed frequencies and returns the result. If no expected frequencies are given, the total N is assumed to be equally distributed across all groups.

Usage: achisquare(f_obs, f_exp=None) f_obs = array of observed cell freq. Returns: chisquare-statistic, associated p-value

aks_2samp(data1, data2)

source code 

Computes the Kolmogorov-Smirnof statistic on 2 samples. Modified from Numerical Recipies in C, page 493. Returns KS D-value, prob. Not ufunc- like.

Usage: aks_2samp(data1,data2) where data1 and data2 are 1D arrays Returns: KS D-value, p-value

amannwhitneyu(x, y)

source code 

Calculates a Mann-Whitney U statistic on the provided scores and returns the result. Use only when the n in each condition is < 20 and you have 2 independent samples of ranks. REMEMBER: Mann-Whitney U is significant if the u-obtained is LESS THAN or equal to the critical value of U.

Usage: amannwhitneyu(x,y) where x,y are arrays of values for 2 conditions Returns: u-statistic, one-tailed p-value (i.e., p(z(U)))

atiecorrect(rankvals)

source code 

Tie-corrector for ties in Mann Whitney U and Kruskal Wallis H tests. See Siegel, S. (1956) Nonparametric Statistics for the Behavioral Sciences. New York: McGraw-Hill. Code adapted from |Stat rankind.c code.

Usage: atiecorrect(rankvals) Returns: T correction factor for U or H

aranksums(x, y)

source code 

Calculates the rank sums statistic on the provided scores and returns the result.

Usage: aranksums(x,y) where x,y are arrays of values for 2 conditions Returns: z-statistic, two-tailed p-value

awilcoxont(x, y)

source code 

Calculates the Wilcoxon T-test for related samples and returns the result. A non-parametric T-test.

Usage: awilcoxont(x,y) where x,y are equal-length arrays for 2 conditions Returns: t-statistic, two-tailed p-value

akruskalwallish(*args)

source code 

The Kruskal-Wallis H-test is a non-parametric ANOVA for 3 or more groups, requiring at least 5 subjects in each group. This function calculates the Kruskal-Wallis H and associated p-value for 3 or more independent samples.

Usage: akruskalwallish(*args) args are separate arrays for 3+ conditions Returns: H-statistic (corrected for ties), associated p-value

afriedmanchisquare(*args)

source code 

Friedman Chi-Square is a non-parametric, one-way within-subjects ANOVA. This function calculates the Friedman Chi-square test for repeated measures and returns the result, along with the associated probability value. It assumes 3 or more repeated measures. Only 3 levels requires a minimum of 10 subjects in the study. Four levels requires 5 subjects per level(??).

Usage: afriedmanchisquare(*args) args are separate arrays for 2+ conditions Returns: chi-square statistic, associated p-value

achisqprob(chisq, df)

source code 

Returns the (1-tail) probability value associated with the provided chi-square value and df. Heavily modified from chisq.c in Gary Perlman's |Stat. Can handle multiple dimensions.

Usage: achisqprob(chisq,df) chisq=chisquare stat., df=degrees of freedom

aerfcc(x)

source code 

Returns the complementary error function erfc(x) with fractional error everywhere less than 1.2e-7. Adapted from Numerical Recipies. Can handle multiple dimensions.

Usage: aerfcc(x)

azprob(z)

source code 

Returns the area under the normal curve 'to the left of' the given z value.
Thus, 
    for z<0, zprob(z) = 1-tail probability
    for z>0, 1.0-zprob(z) = 1-tail probability
    for any z, 2.0*(1.0-zprob(abs(z))) = 2-tail probability
Adapted from z.c in Gary Perlman's |Stat.  Can handle multiple dimensions.

Usage:   azprob(z)    where z is a z-value

aksprob(alam)

source code 

Returns the probability value for a K-S statistic computed via ks_2samp. Adapted from Numerical Recipies. Can handle multiple dimensions.

Usage: aksprob(alam)

afprob(dfnum, dfden, F)

source code 

Returns the 1-tailed significance level (p-value) of an F statistic given the degrees of freedom for the numerator (dfR-dfF) and the degrees of freedom for the denominator (dfF). Can handle multiple dims for F.

Usage: afprob(dfnum, dfden, F) where usually dfnum=dfbn, dfden=dfwn

abetacf(a, b, x, verbose=1)

source code 

Evaluates the continued fraction form of the incomplete Beta function, betai. (Adapted from: Numerical Recipies in C.) Can handle multiple dimensions for x.

Usage: abetacf(a,b,x,verbose=1)

agammln(xx)

source code 

Returns the gamma function of xx.
    Gamma(z) = Integral(0,infinity) of t^(z-1)exp(-t) dt.
Adapted from: Numerical Recipies in C.  Can handle multiple dims ... but
probably doesn't normally have to.

Usage:   agammln(xx)

abetai(a, b, x, verbose=1)

source code 

Returns the incomplete beta function:

    I-sub-x(a,b) = 1/B(a,b)*(Integral(0,x) of t^(a-1)(1-t)^(b-1) dt)

where a,b>0 and B(a,b) = G(a)*G(b)/(G(a+b)) where G(a) is the gamma
function of a.  The continued fraction formulation is implemented
here, using the betacf function.  (Adapted from: Numerical Recipies in
C.)  Can handle multiple dimensions.

Usage:   abetai(a,b,x,verbose=1)

aglm(data, para)

source code 

Calculates a linear model fit ... anova/ancova/lin-regress/t-test/etc. Taken
from:
    Peterson et al. Statistical limitations in functional neuroimaging
    I. Non-inferential methods and statistical models.  Phil Trans Royal Soc
    Lond B 354: 1239-1260.

Usage:   aglm(data,para)
Returns: statistic, p-value ???

aF_oneway(*args)

source code 

Performs a 1-way ANOVA, returning an F-value and probability given
any number of groups.  From Heiman, pp.394-7.

Usage:   aF_oneway (*args)    where *args is 2 or more arrays, one per
                                  treatment group
Returns: f-value, probability

aF_value(ER, EF, dfR, dfF)

source code 

Returns an F-statistic given the following:
        ER  = error associated with the null hypothesis (the Restricted model)
        EF  = error associated with the alternate hypothesis (the Full model)
        dfR = degrees of freedom the Restricted model
        dfF = degrees of freedom associated with the Restricted model

asum(a, dimension=None, keepdims=0)

source code 

An alternative to the Numeric.add.reduce function, which allows one to (1) collapse over multiple dimensions at once, and/or (2) to retain all dimensions in the original array (squashing one down to size. Dimension can equal None (ravel array first), an integer (the dimension over which to operate), or a sequence (operate over multiple dimensions). If keepdims=1, the resulting array will have as many dimensions as the input array.

Usage: asum(a, dimension=None, keepdims=0) Returns: array summed along 'dimension'(s), same _number_ of dims if keepdims=1

acumsum(a, dimension=None)

source code 

Returns an array consisting of the cumulative sum of the items in the passed array. Dimension can equal None (ravel array first), an integer (the dimension over which to operate), or a sequence (operate over multiple dimensions, but this last one just barely makes sense).

Usage: acumsum(a,dimension=None)

ass(inarray, dimension=None, keepdims=0)

source code 

Squares each value in the passed array, adds these squares & returns the result. Unfortunate function name. :-) Defaults to ALL values in the array. Dimension can equal None (ravel array first), an integer (the dimension over which to operate), or a sequence (operate over multiple dimensions). Set keepdims=1 to maintain the original number of dimensions.

Usage: ass(inarray, dimension=None, keepdims=0) Returns: sum-along-'dimension' for (inarray*inarray)

asummult(array1, array2, dimension=None, keepdims=0)

source code 

Multiplies elements in array1 and array2, element by element, and returns the sum (along 'dimension') of all resulting multiplications. Dimension can equal None (ravel array first), an integer (the dimension over which to operate), or a sequence (operate over multiple dimensions). A trivial function, but included for completeness.

Usage: asummult(array1,array2,dimension=None,keepdims=0)

asquare_of_sums(inarray, dimension=None, keepdims=0)

source code 

Adds the values in the passed array, squares that sum, and returns the result. Dimension can equal None (ravel array first), an integer (the dimension over which to operate), or a sequence (operate over multiple dimensions). If keepdims=1, the returned array will have the same NUMBER of dimensions as the original.

Usage: asquare_of_sums(inarray, dimension=None, keepdims=0) Returns: the square of the sum over dim(s) in dimension

asumdiffsquared(a, b, dimension=None, keepdims=0)

source code 

Takes pairwise differences of the values in arrays a and b, squares these differences, and returns the sum of these squares. Dimension can equal None (ravel array first), an integer (the dimension over which to operate), or a sequence (operate over multiple dimensions). keepdims=1 means the return shape = len(a.shape) = len(b.shape)

Usage: asumdiffsquared(a,b) Returns: sum[ravel(a-b)**2]

ashellsort(inarray)

source code 

Shellsort algorithm. Sorts a 1D-array.

Usage: ashellsort(inarray) Returns: sorted-inarray, sorting-index-vector (for original array)

arankdata(inarray)

source code 

Ranks the data in inarray, dealing with ties appropritely. Assumes a 1D inarray. Adapted from Gary Perlman's |Stat ranksort.

Usage: arankdata(inarray) Returns: array of length equal to inarray, containing rank scores

afindwithin(data)

source code 

Returns a binary vector, 1=within-subject factor, 0=between. Input equals the entire data array (i.e., column 1=random factor, last column = measured values.

Usage: afindwithin(data) data in |Stat format


Variables Details [hide private]

geometricmean

Value:
Dispatch((lgeometricmean, (ListType, TupleType)), (ageometricmean, (N.\
ArrayType,)))

harmonicmean

Value:
Dispatch((lharmonicmean, (ListType, TupleType)), (aharmonicmean, (N.Ar\
rayType,)))

mean

Value:
Dispatch((lmean, (ListType, TupleType)), (amean, (N.ArrayType,)))

median

Value:
Dispatch((lmedian, (ListType, TupleType)), (amedian, (N.ArrayType,)))

medianscore

Value:
Dispatch((lmedianscore, (ListType, TupleType)), (amedianscore, (N.Arra\
yType,)))

mode

Value:
Dispatch((lmode, (ListType, TupleType)), (amode, (N.ArrayType,)))

moment

Value:
Dispatch((lmoment, (ListType, TupleType)), (amoment, (N.ArrayType,)))

variation

Value:
Dispatch((lvariation, (ListType, TupleType)), (avariation, (N.ArrayTyp\
e,)))

skew

Value:
Dispatch((lskew, (ListType, TupleType)), (askew, (N.ArrayType,)))

kurtosis

Value:
Dispatch((lkurtosis, (ListType, TupleType)), (akurtosis, (N.ArrayType,\
)))

describe

Value:
Dispatch((ldescribe, (ListType, TupleType)), (adescribe, (N.ArrayType,\
)))

skewtest

Value:
Dispatch((askewtest, (ListType, TupleType)), (askewtest, (N.ArrayType,\
)))

kurtosistest

Value:
Dispatch((akurtosistest, (ListType, TupleType)), (akurtosistest, (N.Ar\
rayType,)))

normaltest

Value:
Dispatch((anormaltest, (ListType, TupleType)), (anormaltest, (N.ArrayT\
ype,)))

itemfreq

Value:
Dispatch((litemfreq, (ListType, TupleType)), (aitemfreq, (N.ArrayType,\
)))

scoreatpercentile

Value:
Dispatch((lscoreatpercentile, (ListType, TupleType)), (ascoreatpercent\
ile, (N.ArrayType,)))

percentileofscore

Value:
Dispatch((lpercentileofscore, (ListType, TupleType)), (apercentileofsc\
ore, (N.ArrayType,)))

histogram

Value:
Dispatch((lhistogram, (ListType, TupleType)), (ahistogram, (N.ArrayTyp\
e,)))

cumfreq

Value:
Dispatch((lcumfreq, (ListType, TupleType)), (acumfreq, (N.ArrayType,))\
)

relfreq

Value:
Dispatch((lrelfreq, (ListType, TupleType)), (arelfreq, (N.ArrayType,))\
)

obrientransform

Value:
Dispatch((lobrientransform, (ListType, TupleType)), (aobrientransform,\
 (N.ArrayType,)))

samplevar

Value:
Dispatch((lsamplevar, (ListType, TupleType)), (asamplevar, (N.ArrayTyp\
e,)))

samplestdev

Value:
Dispatch((lsamplestdev, (ListType, TupleType)), (asamplestdev, (N.Arra\
yType,)))

var

Value:
Dispatch((lvar, (ListType, TupleType)), (avar, (N.ArrayType,)))

stdev

Value:
Dispatch((lstdev, (ListType, TupleType)), (astdev, (N.ArrayType,)))

sterr

Value:
Dispatch((lsterr, (ListType, TupleType)), (asterr, (N.ArrayType,)))

sem

Value:
Dispatch((lsem, (ListType, TupleType)), (asem, (N.ArrayType,)))

zs

Value:
Dispatch((lzs, (ListType, TupleType)), (azs, (N.ArrayType,)))

trimboth

Value:
Dispatch((ltrimboth, (ListType, TupleType)), (atrimboth, (N.ArrayType,\
)))

trim1

Value:
Dispatch((ltrim1, (ListType, TupleType)), (atrim1, (N.ArrayType,)))

paired

Value:
Dispatch((lpaired, (ListType, TupleType)), (apaired, (N.ArrayType,)))

pearsonr

Value:
Dispatch((lpearsonr, (ListType, TupleType)), (apearsonr, (N.ArrayType,\
)))

spearmanr

Value:
Dispatch((lspearmanr, (ListType, TupleType)), (aspearmanr, (N.ArrayTyp\
e,)))

pointbiserialr

Value:
Dispatch((lpointbiserialr, (ListType, TupleType)), (apointbiserialr, (\
N.ArrayType,)))

kendalltau

Value:
Dispatch((lkendalltau, (ListType, TupleType)), (akendalltau, (N.ArrayT\
ype,)))

linregress

Value:
Dispatch((llinregress, (ListType, TupleType)), (alinregress, (N.ArrayT\
ype,)))

ttest_1samp

Value:
Dispatch((lttest_1samp, (ListType, TupleType)), (attest_1samp, (N.Arra\
yType,)))

ttest_ind

Value:
Dispatch((lttest_ind, (ListType, TupleType)), (attest_ind, (N.ArrayTyp\
e,)))

ttest_rel

Value:
Dispatch((lttest_rel, (ListType, TupleType)), (attest_rel, (N.ArrayTyp\
e,)))

chisquare

Value:
Dispatch((lchisquare, (ListType, TupleType)), (achisquare, (N.ArrayTyp\
e,)))

ks_2samp

Value:
Dispatch((lks_2samp, (ListType, TupleType)), (aks_2samp, (N.ArrayType,\
)))

mannwhitneyu

Value:
Dispatch((lmannwhitneyu, (ListType, TupleType)), (amannwhitneyu, (N.Ar\
rayType,)))

tiecorrect

Value:
Dispatch((ltiecorrect, (ListType, TupleType)), (atiecorrect, (N.ArrayT\
ype,)))

ranksums

Value:
Dispatch((lranksums, (ListType, TupleType)), (aranksums, (N.ArrayType,\
)))

wilcoxont

Value:
Dispatch((lwilcoxont, (ListType, TupleType)), (awilcoxont, (N.ArrayTyp\
e,)))

kruskalwallish

Value:
Dispatch((lkruskalwallish, (ListType, TupleType)), (akruskalwallish, (\
N.ArrayType,)))

friedmanchisquare

Value:
Dispatch((lfriedmanchisquare, (ListType, TupleType)), (afriedmanchisqu\
are, (N.ArrayType,)))

chisqprob

Value:
Dispatch((lchisqprob, (IntType, FloatType)), (achisqprob, (N.ArrayType\
,)))

zprob

Value:
Dispatch((lzprob, (IntType, FloatType)), (azprob, (N.ArrayType,)))

ksprob

Value:
Dispatch((lksprob, (IntType, FloatType)), (aksprob, (N.ArrayType,)))

fprob

Value:
Dispatch((lfprob, (IntType, FloatType)), (afprob, (N.ArrayType,)))

betacf

Value:
Dispatch((lbetacf, (IntType, FloatType)), (abetacf, (N.ArrayType,)))

betai

Value:
Dispatch((lbetai, (IntType, FloatType)), (abetai, (N.ArrayType,)))

erfcc

Value:
Dispatch((lerfcc, (IntType, FloatType)), (aerfcc, (N.ArrayType,)))

gammln

Value:
Dispatch((lgammln, (IntType, FloatType)), (agammln, (N.ArrayType,)))

F_oneway

Value:
Dispatch((lF_oneway, (ListType, TupleType)), (aF_oneway, (N.ArrayType,\
)))

F_value

Value:
Dispatch((lF_value, (ListType, TupleType)), (aF_value, (N.ArrayType,))\
)

sum

Value:
Dispatch((lsum, (ListType, TupleType)), (asum, (N.ArrayType,)))

cumsum

Value:
Dispatch((lcumsum, (ListType, TupleType)), (acumsum, (N.ArrayType,)))

ss

Value:
Dispatch((lss, (ListType, TupleType)), (ass, (N.ArrayType,)))

summult

Value:
Dispatch((lsummult, (ListType, TupleType)), (asummult, (N.ArrayType,))\
)

square_of_sums

Value:
Dispatch((lsquare_of_sums, (ListType, TupleType)), (asquare_of_sums, (\
N.ArrayType,)))

sumdiffsquared

Value:
Dispatch((lsumdiffsquared, (ListType, TupleType)), (asumdiffsquared, (\
N.ArrayType,)))

shellsort

Value:
Dispatch((lshellsort, (ListType, TupleType)), (ashellsort, (N.ArrayTyp\
e,)))

rankdata

Value:
Dispatch((lrankdata, (ListType, TupleType)), (arankdata, (N.ArrayType,\
)))

findwithin

Value:
Dispatch((lfindwithin, (ListType, TupleType)), (afindwithin, (N.ArrayT\
ype,)))